澳门金沙娱乐城官网-金沙官网

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

新百家乐庄闲路单图记录| 定做百家乐官网桌子| 百家乐娱乐城代理| 大发888站| 百家乐输一压二| 娱乐城| 百家乐官网扎金花现金| 百家乐发牌盒子| 百家乐赢输| 申请百家乐官网会员送彩金| 免费百家乐追号工具| 12倍百家乐官网秘籍| 百家乐游戏软件出售| 大发888下载df888| 百家乐官网论坛bocaila| 江安县| 百家乐平台注册送现金| 晓游棋牌游戏大厅下载| 真人百家乐官网送钱| 噢门百家乐注码技巧| 凯旋门娱乐场| 网络百家乐模拟投注| 新浪棋牌竞技风暴| 百家乐游戏机路法| 百家乐规则技法| 333娱乐城| 在线百家乐安卓| 石嘴山市| 澳门百家乐官网博彩网| 任我赢百家乐自动投注分析系统| 百家乐官网真人赌场娱乐网规则 | 百家乐官网最佳投注办法| 顶级赌场真假的微博| 星期8百家乐的玩法技巧和规则| 百家乐官网游戏大小| 网上真钱麻将| 娱乐城注册送28| 百家乐游戏厅| 百家乐官网群sun811.com| 悠游棋牌游戏| 大发888怎么找不到了|