澳门金沙娱乐城官网-金沙官网

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐官网国际赌场娱乐网规则 | 百家乐玩法秘诀| 真人百家乐官网娱乐场开户注册| 百家乐官网看牌技巧| 万达百家乐官网娱乐城| 汉川市| 最新百家乐官网电脑游戏机| 百家乐官网网上投注系统| 风水24山头| 顶级赌场官方安卓版手机下载| 百家乐官网破解仪| 百家乐官网赌场破解| 百家乐台布21点| 百家乐官网出千工具价格| ez百家乐技巧| 保险百家乐官网怎么玩| 澳门百家乐游戏说明书| 百家乐官网真钱棋牌| 百家乐视频游戏掉线| 百家乐游乐园| 贵宾百家乐官网的玩法技巧和规则| 永利高百家乐开户| 新巴尔虎左旗| 大发888娱乐城维护| 超级百家乐官网2龙虎斗| 百家乐最佳投注法下载| 威尼斯人娱乐城信誉| 线上百家乐官网攻略| bet365提款限制| 澳门百家乐路子分析| 8彩娱乐| 大发888ber| 永利博百家乐官网的玩法技巧和规则 | 肯博88网| 宝马会百家乐官网现金网| 百家乐官网连跳趋势| 澳门百家乐职业赌客| 博E百百家乐娱乐城| 三国百家乐官网娱乐城| 百家乐官网平玩法几副牌| 百家乐官网博彩安全吗|