澳门金沙娱乐城官网-金沙官网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐博彩免费体验金3| 百家乐官网单人操作扫描道具| 赌博百家乐官网判断决策| 澳门百家乐大家乐眼| 米其林百家乐官网的玩法技巧和规则| 博彩网百家乐官网中和局| 百家乐官网单机版的| 大发888存款| 常熟市| 百家乐官网d博彩论坛| 百家乐官网赢法口诀| 百家乐官网网上真钱娱乐场| 百家乐游戏唯一官网站| 永发娱乐城| 百家乐官网八卦投注法| 百家乐大赌场娱乐网规则| 百家乐最好投| 利来网上娱乐| 百家乐官网五湖四海娱乐网| 百家乐倍投工具| 百家乐官网桌出租| 威尼斯人娱乐网假吗| 南部县| 太阳城百家乐祖玛| 大发888娱乐城取款| 试玩百家乐官网游戏机| 百家乐官网方案| 大发888游戏注册送98| 线上百家乐官网的玩法技巧和规则| 百家乐代打公司| 苍梧县| 新宝百家乐网址| 菲律宾赌球| 打百家乐纯打庄的方法| 网上真人娱乐场| 同花顺百家乐的玩法技巧和规则| 作弊百家乐官网赌具| 北京德州扑克比赛| 德州百家乐官网扑克牌| 皇冠百家乐官网代理网| 大发888官方hgx2dafa888gwd|