澳门金沙娱乐城官网-金沙官网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

澳门威尼斯人| 凯斯娱乐| 网络百家乐玩法| 百家乐官网赌场牌路分析| 竞彩足球| 大发888娱乐场下载dafaylcdown | 百家乐官网论坛bocaila| 百家乐官网二代皇冠博彩| 百家乐投注平台| 赌场百家乐官网是如何| 欢乐博百家乐官网娱乐城| 百家乐官网桌14人| 百家乐研究| 网上赌博网址| 百家乐7scs娱乐网| 百家乐客户端下载| 狮威百家乐官网赌场娱乐网规则| 会同县| 哪个百家乐玩法平台信誉好| 赌场百家乐试玩| 百家乐汝河路| 百家乐软件| 大发888注册送50| 亿酷棋牌世界下载手机版| 娱网百家乐官网补丁| 福布斯百家乐官网的玩法技巧和规则| 百家乐百家乐视频| 百家乐娱乐城博彩通博彩网| 娱乐城新用户送彩金| 电白县| 沽源县| 澳门百家乐官网规| 赌场百家乐攻略| 大发888 安装包的微博| 来凤县| 茅台百家乐官网的玩法技巧和规则| 百家乐庄闲多少| 大发888娱乐场奖金| 百家乐官网最新首存优惠| A8百家乐官网娱乐| 玩百家乐的高手|