澳门金沙娱乐城官网-金沙官网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

大发888官方正版网| 德州扑克 单机版| 大发888代充信用卡| 线上老虎机| 新百家乐官网庄闲路单图记录| 博发百家乐的玩法技巧和规则| 百家乐官网技巧大全| 百家乐佛泰阁| 百家乐官网那个娱乐城信誉好| 百家乐官网网站加盟| 澳门百家乐赌场娱乐网规则| 爱拼百家乐官网的玩法技巧和规则 | 云鼎百家乐官网的玩法技巧和规则 | 百家乐怎么玩最保险| 百家乐官网用什么平台| 新锦江百家乐的玩法技巧和规则| 巨星百家乐官网的玩法技巧和规则| 百家乐五湖四海赌场娱乐网规则 | 欢乐谷娱乐城官网| 做生意什么花招财| 澳门百家乐官网真人娱乐城| bet365存| 迪威百家乐赌场娱乐网规则 | 永利博娱乐开户| 缅甸百家乐网络赌博解谜| 百家乐官网怎样发牌| 百家乐小游戏单机版| 百家乐心态研究| 网页百家乐官网| 麻将二八杠技巧| 缅甸百家乐网上投注| 百家乐官网15人桌布| 博久百家乐官网论坛| 百家乐官网赌场| 七胜百家乐官网娱乐网| 大发888娱乐城df888| 百家乐庄闲机率分析| 百家乐官网上分器定位器| 如何玩百家乐官网扑克| 在线百家乐官网官方网| 百家乐官网神仙道礼包|