澳门金沙娱乐城官网-金沙官网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐赌博机原理| 百家乐官网真人玩下载| 桐城太阳城招聘| 百家乐官网斗牛稳赚| 百家乐娱乐城备用网址| 顶尖百家乐官网对单| 百家乐赌博分析网| 西昌市| 做生意挂什么画招财| 百家乐官网视频大厅| 百家乐扑克牌耙| 百家乐官网单跳双跳| 大发888娱乐城大奖| 百家乐官网技巧技巧| 富顺县| 百家乐电子发牌盒| 爱赢娱乐城资讯网| 松原市| 欧凯百家乐的玩法技巧和规则| 赌场百家乐官网破解| 大发888提款速度快吗| 极速百家乐真人视讯| 博彩百家乐官网画谜网| 湖北省| 百家乐输惨了| 24风水| 百家乐官网怎么注册| 大发888有破解的没| 网络百家乐的信誉| 百家乐官网创立几年了| 百家乐官网高手和勒威| 尊龙百家乐娱乐城| 百家乐娱乐城信息| 新澳博百家乐官网娱乐城| 优博娱乐网址| 三国百家乐的玩法技巧和规则| 百家乐官网翻天下载| 申博百家乐官网下载| 博九百家乐官网娱乐城| 速博网上娱乐| 大发888游戏平台hana|