澳门金沙娱乐城官网-金沙官网

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
澳门百家乐是怎样赌| 真人百家乐官网轮盘| 百家乐官网公式与赌法| 百家乐的方法和公式| 娱乐城源码| 百家乐官网真人娱乐平台| 百家乐官网永利娱乐平台| 百家乐官网正规站| 百家乐平注法口诀| 钦州市| 玩百家乐官网去哪个娱乐城最安全 | 百家乐博弈指| 百家乐官网桌子豪华| 威斯汀百家乐官网的玩法技巧和规则| 大发888促销代码| 上虞市| 实战百家乐的玩法技巧和规则| 环球国际娱乐城| 大发888电脑版下载| 新天地百家乐官网的玩法技巧和规则| 大世界娱乐城真人娱乐| 网上玩百家乐好吗| 贵族国际娱乐城| 百家乐说明| 百家乐官网娱乐城网站| 大发888出纳| 百家乐打大必赢之法| 百家乐官网哪条下路好| 皇冠球网| 巴特百家乐的玩法技巧和规则| 百家乐官网游戏单机牌| 皇冠最新投注网| 百家乐荷官培训| 火命与金命做生意| 百家乐官网的代理办法| 百家乐赢家打法| 百家乐官网技巧| 网上百家乐官网哪里开户| 伟博娱乐场| 大发888网页ban| 威尼斯人娱乐城代理佣金|