澳门金沙娱乐城官网-金沙官网

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
大发888大法8668| 马牌百家乐官网娱乐城| 大发888娱乐场登陆| 真人百家乐官网赌场娱乐网规则| 百家乐官方网站| 老虎百家乐官网的玩法技巧和规则 | 百家乐赌缆注码运用| 百家乐庄闲符号记| 百家乐官网下注时机| 玩百家乐有何技巧| 百家乐官网心得打法| 大发888投注大发娱乐| 發中發百家乐官网的玩法技巧和规则 | 长岛县| 华泰百家乐的玩法技巧和规则| 百家乐官网软件稳赚| 大连娱网棋牌大厅| 百家乐正确的打法| 真钱百家乐官网开户试玩| 百家乐赢钱心得| 中西区| 网上百家乐怎么赌能赢钱| 现金百家乐官网人气最高| 大发888充值500| 做百家乐网上投注| 李雷雷百家乐官网的奥妙| 百家乐官网赢钱绝技| 黄金岛棋牌游戏下载| 安阳百家乐赌博| 百家乐官网博百家乐官网的玩法技巧和规则| 金都国际娱乐| 免费百家乐倍投| 什么百家乐平注法| 百家乐官网里什么叫洗码| 泰州市| 送现金百家乐的玩法技巧和规则 | 百家乐讯特| 菲彩百家乐官网的玩法技巧和规则| 高密市| 大发888客户端的 软件| 百家乐平注法到65688|