澳门金沙娱乐城官网-金沙官网

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

數學與統計學院"21世紀學科前沿"系列學術報告預告

Second-order Least Squares Method for High-dimensional Variable Selection

編輯: 數學學院 董學敏 時間:2015-06-01
報告題目:Second-order Least Squares Method for High-dimensional Variable Selection
報告時間:2015年6月2日下午3:00-4:00
報告地點:良鄉1-208
報告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
博威娱乐在线| 疯狂百家乐游戏| 阿鲁科尔沁旗| 赌博中百家乐什么意思| 如何看百家乐官网的路纸| 24山风水水口| 百家乐官网看牌技巧| 君怡百家乐的玩法技巧和规则| 博盈注册| 百家乐pc| 澳门百家乐皇冠网| 宕昌县| 太阳城娱乐总站| 网上百家乐官网真的假| 大发888娱乐场官方下载| 24山风水实例| 百家乐官网tie| 平博娱乐| 太阳城假网| 澳门百家乐规例| 百家乐官网论坛在线提供| 德州扑克2| 试玩区百家乐官网1000| 全讯网3344111.com| 百家乐官网赌博策略| 甘肃省| 大发888虎牌官方下载| 凯斯百家乐官网的玩法技巧和规则| 大发888手机版客户端| 帝王百家乐新足球平台| 新利棋牌游戏| 蓝盾百家乐赌城| 唐朝百家乐官网的玩法技巧和规则| 百家乐几点不用补牌| 吕梁市| 皇冠赌球网| 棋牌休闲游戏| 24山灶位吉凶歌| 澳门百家乐官网备用网址| bet365网址器| 实战百家乐的玩法技巧和规则|