數(shù)學(xué)與統(tǒng)計(jì)學(xué)院"21世紀(jì)學(xué)科前沿"系列學(xué)術(shù)報(bào)告預(yù)告
編輯: 數(shù)學(xué)學(xué)院 董學(xué)敏 時(shí)間:2015-04-13
時(shí)間:4月17日上午9:00-10:00
地點(diǎn):中關(guān)村校區(qū)研究生樓207
報(bào)告題目: Certain critic Issues in Multiscale Modeling and Methods in Solids: Numerical Analysis' Viewpoint
報(bào)告簡(jiǎn)介: Multiscale modeling and simulation have been quite popular in many fileds for almost two decades. In tis talk, I will discuss several critical issues in multiscale modeling and simulation, in particluar for crystalline solids. Cauchy-Born rule and quasicontinuum method are used as show-case. The former is the bridge between the atomistic model and the continuum mechanics model for crystalline solids, while the latter is among the most popular multiscale method for modeling the elastically deformation of the crystalline solids. On the one hand, we shall discuss the validation of Cauchy-Born rule and the accuracy of quasicontinuum method in the framework of the classical numerical analysis. On the other hand, we shall discuss the limitation of the classical numerical analysis framework when applied to multiscale modeling.
報(bào)告人簡(jiǎn)介:明平兵, 中國(guó)科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院研究員,2000年獲得德國(guó)Humboldt基金資助,2005年獲得第七屆鐘家慶數(shù)學(xué)獎(jiǎng),2014年獲得國(guó)家杰出青年基金資助。明平兵研究員多次訪問美國(guó)Princeton大學(xué)數(shù)學(xué)系和德國(guó)Leipzig Max Planck數(shù)學(xué)研究所,在固體多尺度建模與計(jì)算,特別是在Cauchy-Born法則的數(shù)學(xué)理論、擬連續(xù)體方法和數(shù)值均勻化方法的穩(wěn)定性和收斂性方面做出了突出的研究工作。