澳门金沙娱乐城官网-金沙官网

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

“數通古今,學貫中外”學術講座第六十五期預告【王鳳雨教授】

供稿: 曹鵬(數學與統計學院) 編輯: 數學學院 高冰 時間:2014-04-14

時間:4月15日(周二)下午3:30至4:30

地點:研究生樓103

報告人:王鳳雨教授:北京師范大學教授

Title: Integration by Parts Formula and Shift Harnack Inequality for Stochastic Equations

Abstract: A new coupling argument is introduced to establish Driver's integration by parts formulaand shift Harnack inequality. Unlike known coupling methods where two marginal processes withdifferent starting points are constructed to move together as soon as possible, for the new-type coupling the two marginal processes start from the same point but their difference is aimed to reach a fixed quantity at a given time. Besides the integration by parts formula, the new coupling method is also efficient to imply the shift Harnack inequality. Differently from known Harnack inequalities where the values of a reference function at different points are compared, in the shift Harnack inequality the reference function, rather than the initial point, is shifted. A number of applications of the integration by parts and shift Harnack inequality are presented. The general results are illustrated by some concrete models including the stochastic Hamiltonian system where the associated diffusion process can be highly degenerate, delayed SDEs, and semi-linear SPDEs.
 

博彩百家乐软件| 伯爵百家乐娱乐网| 百家乐软件l柳州| 众发国际娱乐| 百家乐官网群dmwd| 百家乐官网麻将牌| 灵寿县| 悦榕庄百家乐的玩法技巧和规则| 水果机技巧规律| 功夫百家乐官网的玩法技巧和规则 | 湖口县| 百家乐娱乐用品| 顶级赌场网址| 百家乐乐城皇冠| 澳门百家乐官网真人娱乐场| 网上百家乐的打法| 豪门百家乐官网的玩法技巧和规则 | 皇冠投注網| 澳门百家乐群代理| 百家乐官网园首选去澳| 百家乐官网金海岸娱乐| 百家乐双层筹码盘| 百家乐官网大天堂| 大发888破解老虎机| 哪家百家乐官网优惠最好且信誉不错| 九台市| 鸟巢百家乐的玩法技巧和规则| 利记百家乐现金网| 香港百家乐官网赌城| 赌博百家乐官网下载| 网上百家乐官网信誉度| 皇冠网百家乐啊| 真人百家乐赌城| 云鼎百家乐注册| 平乡县| 豪门国际网上娱乐| 97玩棋牌游戏中心| 大发888怎么下载不了| 玩百家乐去哪个娱乐城最安全| 菲律宾百家乐娱乐网| 真人百家乐官网庄闲|